
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Inductive Inductive definitions without UIP

HUGUNIN Jasper

東京工業大学

TPP 2017

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 1 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

1 Inductive types
What are Inductive types?
Simulating Indexed Inductive types by Inductive types.

2 Inductive Inductive Types
What are Inductive Inductive types?
Simulating Inductive Inductive types with UIP.
Simulating Inductive Inductive types without UIP (In progress).

3 Coinductive types
What are Coinductive types?
Simulating Coinductive types.

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 2 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

1 Inductive types
What are Inductive types?
Simulating Indexed Inductive types by Inductive types.

2 Inductive Inductive Types
What are Inductive Inductive types?
Simulating Inductive Inductive types with UIP.
Simulating Inductive Inductive types without UIP (In progress).

3 Coinductive types
What are Coinductive types?
Simulating Coinductive types.

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 3 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What are Inductive types?

Natural-numbers, binary trees, syntax with operations, etc.
Well-founded trees
Least fixed point of a polynomial functor F(X) =

∑
a:A XB(a)

Inductive term :=
| atom (i : nat) : term
| and (s : term) (t : term) : term
| not (t : term) : term

.

a

...

B(a)

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 4 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What are Indexed Inductive types

Indexed Inductive types
We associate a label i : I to each node,
with the label calculated from the data (A → I).
Each child expects a specific label (∀a.Ba → I)
We only allow trees where the expected and actual labels agree.

We can simulate mutual inductive definitions
by labeling nodes as type 1 or type 2.
The above definition suggests a way to simulate
Indexed Inductive types using the equality type
(which in Coq is a simple example of an Indexed Inductive type).

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 5 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of an Indexed Inductive type

Inductive type : Type :=
| N : type
| function_type (A : type) (B : type) : type

.
Notation "(A --> B)" := (function_type A B).
Inductive term : type -> Type :=

| literal (n : nat) : term N
| sum : term (N --> (N --> N))
| app A B : term (A --> B) -> term A -> term B

.

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 6 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Simulating Indexed Inductive types

Definition
1. Start with an unlabeled tree.
2. Define a tree to be well-labeled (for label i) if

the computed label is equal to i and
all the children are well-labeled (for their expected label)

3. Define your Indexed Inductive type to consist of well-labeled trees.

This definition suffices to define the corresponding eliminator,
and as long as the equality type eliminator computes definitionally
on reflexivity, the resulting type has the expected definitional behavior.

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 7 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

1 Inductive types
What are Inductive types?
Simulating Indexed Inductive types by Inductive types.

2 Inductive Inductive Types
What are Inductive Inductive types?
Simulating Inductive Inductive types with UIP.
Simulating Inductive Inductive types without UIP (In progress).

3 Coinductive types
What are Coinductive types?
Simulating Coinductive types.

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 8 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What are Inductive Inductive types?

We define the type of labels at the same time as the type they label.
An example: types and contexts in a simple dependent type theory

InductiveInductive Ctx : Type :=
| emp : Ctx
| app (G : Ctx) (A : Ty G) : Ctx

with Ty : Ctx -> Type :=
| iota (G : Ctx) : Ty G
| N : Ty emp
| pi (G : Ctx) (A : Ty G) (B : Ty (app G A)) : Ty G

.

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 9 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Simulating Inductive Inductive types with UIP

We can proceed the same way we did with Indexed Inductive types.
1. Start by dropping the label information, defining pre-contexts and

pre-types.
2. Define dep : preTy -> preCtx that calculates the label for a type.
3. Recursively add constraints G = dep(A) wherever we have A : Ty(G).
4. Define contexts to be recursively well-labeled pre-contexts.
5. Define types in context G to be recursively well-labeled pre-types A,

along with a proof that the pre-context part of G equals dep(A).

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 10 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discussion of this approach to simulating Inductive
Inductive types

This is the approach given by Forsberg in his thesis
where he proposes Inductive Inductive types.
It suffices to define the introduction rules
and (restricted) elimination rules in extensional type theory
or intensional type theory with UIP (uniqueness of identity proofs).
What about homotopy type theory (which is incompatible with UIP)?
What do we need UIP for?
This encoding has poor definitional behavior
and only weak eliminators.
Is that necessary?

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 11 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Use of UIP in simulating Inductive Inductive types

In defining the eliminator, Forsberg first proves
that there is at most one proof of being well-labeled
for each node.
For the equality proofs, you use UIP to show that
they are unique.
This is different from how you would define the eliminator
for the simulated Indexed Inductive definitions above.
There, you could transport along the equality
from the computed label to the actual label.
But here, we only have a proof that the pre-context parts
are equal, without considering the proof that that pre-context
is well-labeled. So you need those proofs to be unique.

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 12 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example

Consider appending to a context, given pre-context Γ and pre-type A,
preapp(Γ,A).
We add a constraint p1 : Γ = dep(A),
to say that this is a valid context.
But Γ is actually preapp(∆,B), and we also add p2 : ∆ = dep(B).
On the other side, we have that A is recursively well-labeled,
from which we should be able to extract a proof that Γ is well-labeled.
So we have dep1(A) : ∆ = dep(B).
But we have no reason to believe that p2 = dep1(A).

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 13 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1, 2, 3, . . .

So let’s just add that in as a constraint as well!
Define 2nd-well-labeledness, to be where
the proofs of 1st-well-labeledness for G and dep(A) are equal.
Of course, now we need our proofs of 2nd-well-labeledness to agree,
so define 3rd-well-labeledness.
Of course this continues to infinity, but not past it.

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 14 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1, 2, 3, . . . , ω

Defining ω-well-labeledness to be n-well-labeled for all n,
we have a proof that the n-well-labeledness proofs agree for all n,
so since (with function extensionality) two functions are equal
when they are equal on all inputs,
the proofs of ω-well-labeledness should also agree.
Because the definition of (n + 1)-well-labeledness
depends on n-well-labeledness, this is more complicated than it
sounds.
I do not yet have a formal proof of this result.

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 15 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Recursive Recursive definitions

In Forsberg’s thesis, he is prevented from defining stronger versions
of the eliminators by a lack of Recursive Recursive definitions.
(mutual recursive definitions where the second function’s type
depends on the first.)
One example of such a Recursive Recursive definition:

well-labeled-context : preCtx -> Type
well-labeled-type : forall G, well-labeled-context G -> preTy -> Type
well-labeled-context (preapp G A) =

(Gg : well-labeled-context G) &
well-labeled-type G Gg A

But we claim to have defined one such function,
that computes up to equivalence (propositional equality in HoTT)
Perhaps we can leverage similar techniques to define the strong eliminators.

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 16 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1, (1 + 2), (1 + 2 + 3), . . .

Definition (ω-well-labeledness)
1. A function f that gives for each n

a proof of i-well-labeledness for i ≤ n.
2. For each n, a proof that forgetting the proof

of (n + 1)-well-labeledness in f(n + 1) is equal to f(n)

Thus we end up with ω proofs of i-well-labeledness for each i,
but we also have proofs that each is equal to the next.
In the introduction rules, we can take these equalities to be reflexivity.

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 17 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

n times composing reflexivity is not reflexivity

But... In the eliminator, we need to take some properties
of one proof of i-well-labeledness, and transport it to all the others.
The only way to do so is to go step by step up the chain. However,

(fix comp n : a = a :=
match n with
| O => eq_refl
| S m => -- eq_trans (comp m) eq_refl --

comp m
end) n

Is not definitionally equal to reflexivity. It is blocked on recursion on n. It
is however propositionally equal to reflexivity,
so with function extensionality we can prove comp is a constant function.

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 18 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

1 Inductive types
What are Inductive types?
Simulating Indexed Inductive types by Inductive types.

2 Inductive Inductive Types
What are Inductive Inductive types?
Simulating Inductive Inductive types with UIP.
Simulating Inductive Inductive types without UIP (In progress).

3 Coinductive types
What are Coinductive types?
Simulating Coinductive types.

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 19 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What are Coinductive types?

Dual to Inductive types
Streams, automata, etc.
Possibly infinite trees
Greatest fixed point of polynomial functors FX =

∑
a:A XB(a)

For π : FA → A with π(a, c) = a, the limit of the chain

A FA F2A . . .π Fπ F2π

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 20 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Simulating Coinductive types in Coq

Definition (Coinductive type M)
1. Take a function f with f (n) : FnA.
2. Require f (n) = Fnπ(f (n + 1)).

We have a function M → FM where

(f, p) 7→ (f (0), b 7→ (n 7→ f (n + 1).2 bn,

n 7→ p (n + 1).2 bn))

For b0 being the transport of b across p (0) from B(f (0)) to B(f (1).1)
and bn+1 being the transport of bn across p (n + 1).1
from B(f (n).1) to B(f (n + 1).1).
For the introduction rule, we can take p (n).1 to be reflexivity,
but we don’t get bn computes to b.

HUGUNIN Jasper Inductive Inductive definitions without UIP TPP 2017 21 / 21

	Inductive types
	What are Inductive types?
	Simulating Indexed Inductive types by Inductive types.

	Inductive Inductive Types
	What are Inductive Inductive types?
	Simulating Inductive Inductive types with UIP.
	Simulating Inductive Inductive types without UIP (In progress).

	Coinductive types
	What are Coinductive types?
	Simulating Coinductive types.

