
Why not W?1

Jasper Hugunin2

Carnegie Mellon University, Pittsburgh PA, USA3

jasper@hugunin.net4

Abstract5

In an extensional setting, W types are sufficient to construct a broad class of inductive types, but6

in intensional type theory the standard construction of even the natural numbers does not satisfy7

the required induction principle. In this paper, we show how to refine the standard construction of8

inductive types such that the induction principle is provable and computes as expected in intensional9

type theory without using function extensionality.10

2012 ACM Subject Classification Theory of computation → Type theory11

Keywords and phrases dependent types, intensional type theory, inductive types, W types12

Supplementary Material Tag v0.1 of https://github.com/jashug/WhyNotW13

Acknowledgements I want to thank Jon Sterling for his helpful feedback on a draft of this paper.14

1 Introduction15

In intensional type theory with only type formers 0, 1, 2, Σ, Π, W, Id and U, can the natural16

numbers be constructed?17

The W type [9] captures the essence of induction, and in extensional type theory it is18

straightforward to construct familiar inductive types out of it, including the natural numbers19

[4]. Taking the elements of the two-element type 2 to be Ô and Ŝ, we define20

Ñ = Wb:2(case b of {Ô 7→ 0, Ŝ 7→ 1}). (1)21

(the tilde distinguishes the standard construction from our refined construction of the natural22

numbers in Section 2)23

However, as is well known [4, 8, 10, 11], in intensional type theory we cannot prove the24

induction principle for Ñ without some form of function extensionality. The obstacle is in25

the Ô case, where we end up needing to prove P f for an arbitrary f : 0→ Ñ, when we only26

know P (x 7→ casex of {}).27

Can this obstacle be avoided? The answer turns out to be yes; in this paper, we show28

that refining the standard construction allows the natural numbers and many other inductive29

types to be constructed from W in intensional type theory. 1
30

Type-theoretic notations and assumptions31

We work in a standard intensional type theory with dependent function types Πa:AB[a] (also32

written ∀a:AB[a], (a : A)→ B[a], non-dependent version A→ B, constructed as (x 7→ y[x])33

or (λx. y[x])), dependent pair types Σa:AB[a] (also written (a : A)× B[a], non-dependent34

version A × B, constructed as (x, y), destructed as fst p, snd p), finite types 0, 1 (with35

inhabitant ?), 2 (with inhabitants ff and tt, aliased to Ô and Ŝ when we are talking about36

constructing the natural numbers), W types Wa:A B[a] (constructor sup af for a : A and37

f : B[a]→ Wa B[a]), identity types IdA x y (constructor refl, destruction of e : Idx y keeps38

1 These results have been formalized in Coq 8.12 [13]: see the link to supplementary material in the top
matter of this article.

https://orcid.org/0000-0002-1133-5354
mailto:jasper@hugunin.net
https://github.com/jashug/WhyNotW

2 Why not W?

x fixed and generalizes over y and e), and a universe U. We define the coproduct A+B as39 ∑
b:2 case b of {ff 7→ A, tt 7→ B}, and notate the injections as inl and inr.40

Function extensionality is the principle that ∀x Id (f x) (g x) implies Id f g, and unique-41

ness of identity proofs is the principle that IdId x y p q is always inhabited. We do not assume42

either of these principles.43

We require strict β-rules for all type formers, and strict η for Σ (that p = (fst p, snd p))44

and Π (that f = (x 7→ fx)). For convenience we will also assume strict η for 1 (that u = ?).45

2 Constructing N (for real this time)46

We run into problems in the Ô case because we don’t know that f = (x 7→ casex of {}) for47

an arbitrary f : 0→ Ñ. To solve those problems, we will assume them away. To construct48

N, we will first define a predicate canonical : Ñ→ U such that canonical(sup Ôf) implies49

Id (x 7→ casex of {}) f . We then let N = Σx:Ñ canonicalx be the canonical elements of Ñ50

(with Ñ defined by Equation (1)). This predicate will be defined by induction on W, so we51

can start out with52

canonical(supxf) = ? : U (x : 2, f : · · · → Ñ, may use canonical(f i) : U).53

The obvious next thing to do is to split by cases on x : 2:54

canonical(sup Ôf) = ? : U (f : 0→ Ñ, may use canonical(f i)),55

canonical(sup Ŝf) = ? : U (f : 1→ Ñ, may use canonical(f i)).56
57

We need canonical terms to be hereditarily canonical, that is, we want to include the58

condition that all sub-terms are canonical. For the Ŝ case, thanks to the strict η rules for 159

and Π, the types canonical(f ?) and (i : 1)→ canonical(f i) are equivalent; we can use60

either one. This will be the only condition we need for the Ŝ case, so we can complete this61

part of the definition:62

canonical(sup Ŝf) = canonical(f ?).63

The Ô case is the interesting one. The blind translation of “every sub-term is canonical”64

is (i : 0)→ canonical(f i), but this leads to the same problem as before: without function65

extensionality we can’t work with functions out of 0. Luckily, we have escaped the rigid66

constraints of the W type former, and have the freedom to translate the recursive condition67

as simply 1. No sub-terms of zero, no conditions necessary!68

canonical(sup Ôf) = ? : U (f : 0→ Ñ)69

That is all well and good, but we can’t forget why we are here in the first place: we need70

Id (x 7→ casex of {}) f . Luckily, there is a hole just waiting to be filled:71

canonical(sup Ôf) = Id (x 7→ casex of {}) f.72

Induction73

Now we are ready for the finale: induction for N with the right computational behavior.74

Assume we are given a type P [n] which depends on n : N, along with terms ISO : P [O]75

and ISS : ∀n:NP [n]→ P [S n]. Our mission is to define a term recN : ∀n:NP [n]. Happily, the76

proof goes through if we simply follow our nose.77

J. Hugunin 3

Ñ = Wb:2(case b of {Ô 7→ 0, Ŝ 7→ 1}) : U,

canonical : Ñ→ U,

canonical(sup Ôf) = Id (x 7→ casex of {}) f,
canonical(sup Ŝf) = canonical(f ?),

(2)

N = Σx:Ñ canonicalx : U, (3)
O = (sup Ô(x 7→ casex of {}), refl) : N, (4)
S = n 7→ (sup Ŝ(? 7→ fstn), sndn) : N→ N. (5)

Figure 1 The complete definition of N.

We begin by performing induction on fstn : Ñ, and then case on Ô vs Ŝ, just like the78

definition of canonical.79

recN(sup Ôf, y) = ? : P [(sup Ôf, y)] (f : 0→ Ñ, y : Id (x 7→ casex of {}) f),80

recN(sup Ŝf, y) = ? : P [(sup Ŝf, y)] (f : 1→ Ñ, y : canonical(f ?)).81

(where we may make recursive calls recN(f i, y′) for any i and y′)82
83

In the Ŝ case, f = (? 7→ f ?) by the η rules for 1 and Π, and thus (sup Ŝf, y) = S (f ?, y).84

We can thus define85

recN(sup Ŝf, y) = ISS (f ?, y) (recN(f ?, y)).86

The Ô case is again the interesting one, but it is only a little tricky. We know ISO :87

P [(sup Ô (x 7→ casex of {}), refl)], and we want P [(sup Ôf, y)]. But since we have y :88

Id (x 7→ casex of {}) f , this is a direct application of the eliminator for Id. We thus89

complete the definition of recN with90

recN(sup Ôf, y) = case y of {refl 7→ ISO}.91

Examining the definitions, we can see that as long as we have strict η for Σ and strict92

β for Id, recNO = ISO and recN(Sn) = ISS n (recN n). Thus we have indeed defined the93

natural numbers with the expected induction principle and computational behavior in terms94

of the W type.95

I Theorem 1. The natural numbers can be constructed in intensional type theory with only96

type formers 0, 1, 2, Σ, Π, W, Id and U, such that the induction principle has the expected97

computational behavior.98

3 The General Case99

Above, we have refuted a widely held intuition about the expressiveness of intensional type100

theory with W as the only primitive inductive type. Once we know we can construct the101

natural numbers, that we can construct lots of other inductive types is much less surprising.102

Nevertheless, for completeness we define below an internal type of codes for inductive103

types along with the construction from W types of the interpretation of those codes. For104

convenience, in this section we assume that we have not just one universe U but an infinite105

cumulative tower of universes U0 : U1 : · · · : Ui : Ui+1 : . . . all closed under 0, 1, 2, Σ, Π, W,106

and Id such that A : Ui implies A : Ui+1.107

The end result is a universe of inductive types which is self-describing, or “levitating” in108

the sense of [2].109

4 Why not W?

Given

a type P [n] depending on n : N, (6)
ISO : P [O], (7)
ISS : ∀n:NP [n]→ P [S n], (8)

we have

recN : ∀n:NP [n],
recN(sup Ôf, y) = case y of {refl 7→ ISO},
recN(sup Ŝf, y) = ISS (f ?, y) (recN(f ?, y)),

(9)

recNO = ISO, (10)
recN(Sn) = ISS n (recN n). (11)

Figure 2 Induction for N.

3.1 Inductive Codes110

We will let Codei : Ui+1 be the type of codes for inductive types in Ui, and implement it for111

now as a primitive inductive type. In Section 3.4 we will show how to construct Code itself112

from W.113

To define Code, we adapt the axiomatization of induction-recursion from [5]. Thus Codei114

is generated by the constructors115

nil : Codei, nonind : (A : Ui)→ (A→ Codei)→ Codei, ind : Ui → Codei → Codei.116

Looking at Ui as the usual category of types and functions, a code A : Codei defines an117

endofunctor FA : Ui → Ui defined by recursion on A by118

Fnil X = 1, (12)119

Fnonind(A,B) X = Σa:AF(B a) X, (13)120

Find(Ix,B) X = (Ix→ X)× FB X. (14)121
122

I Example 2. We can define a code for the natural numbers as123

“N” = nonind(2, b 7→ case b of {Ô 7→ nil, Ŝ 7→ ind(1,nil)}) : Code0.124

Each code also defines a polynomial functor GA X = Σs:SA
(PA s→ X), which is what is125

used in the standard construction:126

Snil = 1 Pnil ? = 0 (15)127

Snonind(A,B) = Σa:AS(B a) Pnonind(A,B) (a, b) = P(B a) b (16)128

Sind(Ix,B) = SB Pind(Ix,B) b = Ix + PB b. (17)129

ẼlA = Ws:SA
PA. (18)130

131

There is an easy-to-define natural transformation ε : F ⇒ G, and it even has a left132

inverse on objects, but without function extensionality ε does not have a right inverse133

(roughly speaking, ε is not surjective); there are usually terms g : G X not in the image134

of ε. This is exactly the problem we ran into in the case of the natural numbers: the map135

(? 7→ (x 7→ casex of {})) : 1→ (0→ X) is not surjective.136

J. Hugunin 5

The last component we need is AllA s : (Q : PA s→ Uj)→ Uj (for universe level j ≥ i),137

the quantifier “holds at every position” (a refinement of ∀p, Q p):138

Allnil ? Q = 1, (19)139

Allnonind(A,B)(a, b) Q = All(B a) b Q, (20)140

Allind(Ix,B) b Q = (∀i, Q (inl i))×AllB b (Q ◦ inr). (21)141
142

Noting that snd(ε t) : P (fst(ε t)) → X enumerates the sub-terms of t : F X, All(Q ◦143

snd(ε t)) lets us lift a predicate Q : X → Uj to a predicate over t : F X.144

I Lemma 3. There is an equivalence r (à la Voevodsky, a function with contractible fibers)145

r : F (Σx:XC x) ' Σ(t:F X) All(C ◦ snd(ε t)). (22)146

Proof. Follows easily by induction on the code A. J147

3.2 The General Construction148

We are finally ready to define the true construction of inductive types El : Code → Ui.149

As with natural numbers, we define a “canonicity” predicate on ẼlA, which says that “all150

subterms are canonical, and this node is in the image of ε”. This translates as:151

canonical(sup sf) = All(canonical ◦f)× (t : F (ẼlA))× Id (ε t) (s, f) : Ui, (23)152

and thus we finally have153

El A = Σx:Ẽl A canonicalx. (24)154

For the constructors, we expect to have intro : F (ElA)→ ElA, which we define by155

introx = (sup (ε (fst (r x))), (snd(r x), fst (r x), refl)). (25)156

using the equivalence r from Lemma 3 to split x : F (ElA) into fst(r x) : F (ẼlA) and157

snd(r x) : All(canonical ◦ snd(ε fst (r x))).158

3.3 General Induction159

When we go to define the induction principle for ElA, we are given P : ElA→ Uj for some160

j ≥ i and the induction step IS : ∀(x:F (El A)) All(P ◦ snd(ε x)) → P (introx), and want to161

define rec : ∀(x:El A)P x. The definition proceeds by induction on fstx:162

rec(sup sf, (h, t, e)) = ? : P (sup sf, (h, t, e)) h : All(canonical ◦f) e : Id (ε t) (s, f),163

and we have induction hypothesis H = p 7→ c 7→ rec(f p, c) : ΠpΠcP (f p, c). Next, we164

destruct the identity proof e, generalizing over both h and H, leaving us with165

rec(sup(ε t), (h, t, refl)) = ? : P (sup(ε t), (h, t, refl)),166

for t : F (ẼlA), h : All(canonical ◦ snd(ε t)), and H : ΠpΠcP (snd(ε t) p, c). The last step167

to bring us in line with the definition of intro is to use the equivalence from Lemma 3 to168

replace (t, h) with r x for some x : F (ElA), leaving us with169

rec(sup(ε (fst(r x))), (snd(r x), fst(r x), refl)) = ? : P (introx)170

6 Why not W?

and induction hypothesis H : ΠpΠcP (snd(ε (fst(r x))) p, c). We can then apply IS, but171

that leaves us with an obligation to prove All(P ◦ snd(ε x)). Fortunately, it is easy to show172

by induction on the code A that our hypothesis H is sufficient to dispatch this obligation.173

This completes the definition of the induction principle, and it can be observed on concrete174

examples like the natural numbers to have the expected computational behavior. We can also175

prove a propositional equality Id (rec(introx)) (IS x (rec ◦ snd(ε x))) witnessing the expected176

computation rule, and observe on concrete examples that this witness computes to reflexivity.177

The details of this construction have all been formalized in Coq.178

3.4 Bootstrapping179

In Section 3.1 we postulated the type Codei to be a primitive inductive type, which leads180

to the question of whether the general construction we have proposed is really constructing181

inductive types out of W or whether it is making sneaky use of the inductive structure of182

Codei to perform the construction.183

As a first observation, Codei : Ui+1 while El : Codei → Ui, thus Codei can’t appear as184

data in ElA: it is too big! However, this argument doesn’t show that we can completely185

eliminate Codei from the construction.186

Next, we observe that the inductive type Codei itself has a code “Codei” : Codei+1:187

“Codei” = nonind((1 + Ui) + Ui, t 7→ case t of {188

inl(inl ?) 7→ nil, (case nil)189

inl(inrA) 7→ ind(A,nil), (case nonind)190

inr Ix 7→ ind(1,nil), (case ind)191

}).192
193

Then we can propose to define Codei = El “Codei”, but this is a circular definition: we194

define Codei by using recursion on Codei+1. What we really want, and in some ways should195

be able to expect, is that El “Codei” computes to a normal form which no longer mentions196

Code but is expressed purely in terms of W. We could then tie the knot by defining Codei to197

be what El “Codei” will compute to, once we have defined El.198

There is just one problem to resolve, which is that currently, El, which is defined by199

recursion on codes, gets stuck on El(case t of {. . .}) which is used to branch on constructor200

tags; we are missing some sort of commuting conversion [7, section 10]. Fortunately, we can201

do without it, by reifying branching on constructor tags as part of Code. We add another202

constructor203

choice : Codei → Codei → Codei, Fchoice(A,B) X = FA X + FB X (26)204

which encodes the simple binary sum of functors, specializing the dependent sum of functors205

nonind(2, b 7→ case b of {. . .}) (but with all proofs essentially the same). With this in hand,206

we can define207

“Codei” = choice(choice((27)208

nil, (case nil)209

choice(210

nonind(Ui, A 7→ ind(A,nil)), (case nonind)211

ind(1, ind(1,nil)))), (case choice)212

nonind(Ui, Ix 7→ ind(1,nil))). (case ind)213
214

J. Hugunin 7

With this adjustment, the structure of the code is not hidden inside case, and the215

computation of El “Codei” proceeds to completion without becoming stuck, resulting in216

a term which does not mention Code at all. From there, we can define El such that217

El “Codei” = Codei, as in [2] but with no invisible cables, just the W type.218

I Theorem 4. In intensional type theory with type formers 0, 1, 2, Σ, Π, W, Id and an219

infinite tower of universes Ui, there exist terms Codei : Ui+1 such that Codei is a type of220

codes for inductive types, constructed by El : Codei → Ui, and terms “Codei” : Codei+1 such221

that El “Codei” = Codei.222

4 Discussion223

4.1 Composition224

Being codes for functors, one may ask if Codei is closed under composition of functors? As225

with the codes for inductive-recursive types we have modified, without function extensionality226

we do not appear to have composition (for similar reasons as considered in [6]). Indeed,227

experiments suggest that the general construction of a class of inductive types closed under228

composition of the underlying functors essentially requires function extensionality. Even229

worse, to get definitional computation rules for the resulting inductive types, all our attempts230

have required that transporting over funext(x 7→ refl) computes to the identity, a property231

which not even cubical type theory [3] satisfies (it is satisfied, however, by observational type232

theory [1]). Thus, we do not know how to combine a class of inductive types closed under233

composition constructed from the W type as we have in Section 3 with the the principle of234

Univalence [12] while maintaining good computational behavior.235

We do however wish to emphasize that the construction in Section 3 (which is not closed236

under composition) is completely compatible with Univalence, and could be implemented in237

cubical type theory as long as an identity type with strict β rule is used.238

4.2 Canonicity239

Despite being constructed from W types, our natural numbers enjoy the canonicity property240

(that for every closed term n of type N, either n = O or n = Sm for some closed m : N), at241

least as long as 2 and Id enjoy canonicity (closed b : 2 implies b = Ô or b = Ŝ, and closed242

e : Idx y implies e = refl and x = y). The trick is that when we have some representation243

of zero, it looks like (sup Ôf, e), where e is a closed term of type Id (x 7→ casex of {}) f ,244

and thus by canonicity for Id, this must be (sup Ô(x 7→ casex of {}), refl) = O.245

However, in a situation like cubical type theory where function extensionality holds, Id246

no longer enjoys canonicity, and neither does our construction of the natural numbers.247

4.3 Problems248

What are the problems with using this construction as the foundation for inductive types in249

a proof assistant? While we have shown bare possibility, this is not an obviously superior250

solution when compared to the inductive schemes present in proof assistants today.251

The construction is complex, which has the possibility of confusing unification and other252

elaboration algorithms. While the reduction behavior simulates the expected such, the253

reduction engine has to make many steps to simulate one step of a primitive inductive type,254

which can lead to a large slowdown. As an example, we observed the general construction255

slow down from seconds to check to half an hour when replacing primitive inductive types256

8 Why not W?

the bootstrapped definition of Code. Understanding exactly why this slowdown happens and257

how to alleviate it is an important question to be answered before attempting to apply this258

construction in practice.259

This construction is also limited in it’s expressivity. Nested inductive types such as260

Inductive tree := node : list tree → tree do not appear to be constructible, nor do261

mutual inductive types landing in a mixture of impredicative and predicative sorts at different262

levels, and nor do inductive-inductive types.263

4.4 Conclusion264

We have shown that intensional type theory with W and Id types is more expressive than265

was previously believed. It supports not only the natural numbers, but a whole host of266

inductive types, generated by an internal type of codes, which is itself an inductive type coded267

for by itself (one universe level up). This brings possibilities for writing generic programs268

acting on inductive types internally, and perhaps simplifies the general study of extensions269

of intensional type theory: once you know W works, you know lots of inductive types work270

(with a few side conditions to check).271

Thus we return to the titular question: why not use W as the foundation of induction272

in intensional type theory? Equipped with this result, one can no longer say that it is273

impossible.274

References275

1 Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equality, now!276

In Aaron Stump and Hongwei Xi, editors, Proceedings of the ACM Workshop Programming277

Languages meets Program Verification, PLPV 2007, Freiburg, Germany, October 5, 2007,278

pages 57–68. ACM, 2007. doi:10.1145/1292597.1292608.279

2 James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. The gentle280

art of levitation. In Paul Hudak and Stephanie Weirich, editors, Proceeding of the 15th281

ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore,282

Maryland, USA, September 27-29, 2010, pages 3–14. ACM, 2010. doi:10.1145/1863543.283

1863547.284

3 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory:285

A Constructive Interpretation of the Univalence Axiom. In Tarmo Uustalu, editor, 21st286

International Conference on Types for Proofs and Programs (TYPES 2015), volume 69 of287

Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:34, Dagstuhl, Germany,288

2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/289

opus/volltexte/2018/8475, doi:10.4230/LIPIcs.TYPES.2015.5.290

4 Peter Dybjer. Representing inductively defined sets by wellorderings in Martin-Löf’s type291

theory. Theoretical Computer Science, 176(1):329 – 335, 1997. doi:https://doi.org/10.292

1016/S0304-3975(96)00145-4.293

5 Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive definitions. In294

Jean-Yves Girard, editor, Typed Lambda Calculi and Applications, 4th International Conference,295

TLCA’99, L’Aquila, Italy, April 7-9, 1999, Proceedings, volume 1581 of Lecture Notes in296

Computer Science, pages 129–146. Springer, 1999. doi:10.1007/3-540-48959-2_11.297

6 Neil Ghani, Conor McBride, Fredrik Nordvall Forsberg, and Stephan Spahn. Variations on298

inductive-recursive definitions. In Kim G. Larsen, Hans L. Bodlaender, and Jean-François299

Raskin, editors, 42nd International Symposium on Mathematical Foundations of Computer300

Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, volume 83 of LIPIcs, pages301

63:1–63:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.302

MFCS.2017.63.303

https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1145/1863543.1863547
http://drops.dagstuhl.de/opus/volltexte/2018/8475
http://drops.dagstuhl.de/opus/volltexte/2018/8475
http://drops.dagstuhl.de/opus/volltexte/2018/8475
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/https://doi.org/10.1016/S0304-3975(96)00145-4
https://doi.org/https://doi.org/10.1016/S0304-3975(96)00145-4
https://doi.org/https://doi.org/10.1016/S0304-3975(96)00145-4
https://doi.org/10.1007/3-540-48959-2_11
https://doi.org/10.4230/LIPIcs.MFCS.2017.63
https://doi.org/10.4230/LIPIcs.MFCS.2017.63
https://doi.org/10.4230/LIPIcs.MFCS.2017.63

J. Hugunin 9

7 Jean-Yves Girard. Proofs and Types. Cambridge University Press, 1990. Translated and with304

appendices by Paul Taylor and Yves Lafont. URL: http://www.paultaylor.eu/stable/prot.305

pdf.306

8 Healfdene Goguen and Zhaohui Luo. Inductive data types: Well-ordering types revisited. Logical307

Environments, 1992. URL: https://www.cs.rhul.ac.uk/home/zhaohui/WTYPES93.pdf.308

9 Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984. Notes by G. Sambin of a series309

of lectures given in Padua, 1980.310

10 Conor McBride. W-types: good news and bad news, Mar 2010. URL: https://mazzo.li/311

epilogue/index.html%3Fp=324.html.312

11 Bengt Nordsrtöm, Kent Petersson, and Jan Smith. Programming in Martin-Löf’s Type Theory.313

Oxford University Press, 1990.314

12 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of315

Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/316

book/.317

13 The Coq Development Team. The Coq proof assistant, version 8.12.0, July 2020. doi:318

10.5281/zenodo.4021912.319

http://www.paultaylor.eu/stable/prot.pdf
http://www.paultaylor.eu/stable/prot.pdf
http://www.paultaylor.eu/stable/prot.pdf
https://www.cs.rhul.ac.uk/home/zhaohui/WTYPES93.pdf
https://mazzo.li/epilogue/index.html%3Fp=324.html
https://mazzo.li/epilogue/index.html%3Fp=324.html
https://mazzo.li/epilogue/index.html%3Fp=324.html
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
https://doi.org/10.5281/zenodo.4021912
https://doi.org/10.5281/zenodo.4021912
https://doi.org/10.5281/zenodo.4021912

	Introduction
	Constructing (for real this time)
	The General Case
	Inductive Codes
	The General Construction
	General Induction
	Bootstrapping

	Discussion
	Composition
	Canonicity
	Problems
	Conclusion

