
Constructing Inductive-Inductive Types in
Cubical Type Theory

Jasper Hugunin

University of Washington, Seattle WA, USA
jasper@hugunin.net � https://orcid.org/0000-0002-1133-5354

Abstract. Inductive-inductive types are a joint generalization of mutual
inductive types and indexed inductive types. In extensional type theory,
inductive-inductive types can be constructed from inductive types, and
this construction has been conjectured to work in intensional type theory
as well. In this paper, we show that the existing construction requires
Uniqueness of Identity Proofs, and present a new construction (which
we conjecture generalizes) of one particular inductive-inductive type in
cubical type theory, which is compatible with homotopy type theory.

1 Introduction
Inductive-inductive types allow for the mutual inductive definition of a type and
a family over that type. As an example, we can simultaneously define contexts
and types defined in a context, with dependently typed context extension:

Ctx : Type, Ty : Ctx → Type,

ϵ : Ctx, U : (Γ : Ctx) → Ty Γ,

ext : (Γ : Ctx) → Ty Γ → Ctx, El : (Γ : Ctx) → Ty (ext Γ (U Γ )).

Such definitions have been used for example by Danielsson [9] and Chapman
[5] to define intrinsically typed syntax of a dependent type theory, and Agda
supports such definitions natively.

These types have been studied extensively in Nordvall Forsberg [15]. There,
in §5.3, inductive-inductive types with simple elimination rules (defined in op.
cit. §3.2.5) are constructed from indexed inductive types in extensional type
theory, and in §5.4 this is conjectured to work in intensional type theory as well.

In this paper, we first show that this construction does not work in intensional
type theory without assuming Uniqueness of Identity Proofs (UIP), which is
incompatible with the Univalence axiom of Homotopy Type Theory [18]. We
then give an alternate construction in cubical type theory [6], which is compatible
with Univalence. Specifically, this paper makes the following contributions:1

1. In §2, we show that, in intensional type theory, if the types constructed
by Nordvall Forsberg satisfy the simple elimination rules, then UIP holds
(formalized in both Coq and Agda).

2. In §3, we give the construction of a particular inductive-inductive type with
simple elimination rules in cubical type theory (formalized in cubical Agda).

1 The formalization can be found at https://github.com/jashug/ConstructingII.

https://orcid.org/0000-0002-1133-5354
https://github.com/jashug/ConstructingII


2 Jasper Hugunin

1.1 Syntax and Conventions

We mostly mimic Agda syntax. The double bar symbol = is used for definitions
directly and by pattern matching, and for equality of terms up to conversion.
We write (a : A) → B for the dependent product type, and A → B for the
non-dependent version. Functions are given by pattern matching f x = y or by
lambda expressions f = λx.y. Similarly (a : A)×B is the dependent pair type,
and A × B the non-dependent version. Pairs are (a, b), and projections are p.1
and p.2. The unit type is ⊤, with unique inhabitant ⋆. Identity types are x ≡X y
for the type of identifications of x with y in type X, and we write refl for a
proof of reflexivity. We do not assume that axiom K holds for identity types. We
write Type for a universe of types (where Agda uses Set). In section 3 we work
in cubical type theory, which will be explained there.

1.2 Running Example of an Inductive-Inductive Definition

For the purposes of this paper, we will focus on one relatively simple inductive-
inductive definition (with only 5 clauses), parametrized by a type X, which is
given in Figure 1. We will use this definition to prove that Nordvall Forsberg’s
construction implies UIP in §2 and as a running example to demonstrate our
construction in cubical type theory in §3.

Our example starts with the simplest inductive-inductive sorts, taking A :
Type and B : A → Type, and then populates A and B with simple constructors
which suffice for our proof of UIP. We have inj, which is supposed to give exactly
one element of each B a, while ext lets us mix Bs back into the As (mirroring the
type of context extension), and η gives us something to start with: one element of
A for each element of X (following the use of η in [15, Example 3.3]). The proof
of UIP in §2 proceeds by considering the type B (ext (η x) (inj (η x)) for some
x : X, and noticing that, while the simple elimination rules tell us that there
should only be one element of this type (given by inj), in Nordvall Forsberg’s
construction there are actually as many as there are proofs of x ≡X x.

Our goal in this paper is to construct (A,B, η, ext, inj) of the types given
in Figure 1 such that the simple elimination rules hold without using UIP. But
first, we will show why Nordvall Forsberg’s approach is not sufficient.

2 Deriving UIP

Uniqueness of Identity proofs (UIP) for a type X is the principle that, for all
x : X, y : X, p : x ≡X y, q : x ≡X y, the type p ≡x≡Xy q is inhabited.
Equivalently, for all x : X, p : x ≡X x, the type p ≡x≡Xx refl is inhabited. It
expresses that there is at most one proof of any equality. UIP is independent of
standard intensional type theory [13], and is inconsistent with Homotopy Type
Theory [18].

Nordvall Forsberg’s construction of inductive-inductive types is described in
[15, §5.3]. In this section, we show that if the simple elimination rules hold for



Constructing Inductive-Inductive Types in Cubical Type Theory 3

Given X : Type, we consider the inductive-inductive definition
A : Type,

B : A → Type,

η : X → A,

ext : (a : A) → B a → A,

inj : (a : A) → B a.

This has simple elimination rules stating that for all motives (PA,PB) and methods
(Pη, Pext, Pinj)

PA : A → Type,

PB : (a : A) → B a → Type,

Pη : (x : X) → PA (η x),

Pext : (a : A) → PA a → (b : B a) → PB a b → PA (ext a b),

Pinj : (a : A) → PA a → PB a (inj a),

we have eliminators (EA,EB) satisfying equalities (Eη,Eext, Einj).
EA : (a : A) → PA a,

EB : (a : A) → (b : B a) → PB a b,

Eη : (x : X) → EA (η x) ≡PA (η x) Pη x,

Eext : (a : A) → (b : B a) →
EA (ext a b) ≡PA (ext a b) Pext a (EA a) b (EB a b),

Einj : (a : A) → EB a (inj a) ≡PB a (inj a) Pinj a (EA a).

Fig. 1: Running Example

this construction of the inductive-inductive type in Figure 1, then UIP holds for
the type X (Theorem 1). This argument has been formalized in both Coq version
8.8.0 [8] (see UIP_from_Forsberg_II.v) and Agda using the --without-K flag
(see UIP_from_Forsberg_II.agda)

To recap, Nordvall Forsberg [15, §5.3] constructs an inductive-inductive type
by first defining an approximation (the pre-syntax) which drops the A index
from B leaving a mutual inductive definition. Concretely, we have Apre and Bpre
defined as in Figure 2. Then a mutual indexed inductive definition is used to
define the index relationship between Apre and Bpre; these are the goodness
predicates Agood and Bgood. Finally, the inductive object (A,B, η, ext, inj) is
defined by pairing the pre-syntax with goodness proofs (see Figure 3).

In extensional type theory, Nordvall Forsberg proved that Agood a is a mere
proposition (all inhabitants are equal) [15, Lemma 5.37(ii)]. In intensional type
theory as well, if function extensionality and UIP hold then Agood is a mere
proposition. This uniqueness of goodness proofs justifies having the definition of
B ignore the goodness proof agood, since agood can have at most one value.

In the next two subsections, we prove that:

1. If Agood a is a mere proposition then UIP holds for the type X (Lemma 2).
2. If the simple elimination rules from Figure 1 hold for the (A,B, η, inj, ext)

constructed above then Agood a is a mere proposition (Lemma 5).



4 Jasper Hugunin

Dropping the inductive index from B leaves a mutual inductive definition.

Apre : Type,

Bpre : Type,

ηpre : X → Apre,

extpre : Apre → Bpre → Apre,

injpre : Apre → Bpre.

Fig. 2: Pre-syntax for the running example

A mutual indexed inductive definition is used to define the index relationship
between Apre and Bpre:

Agood : Apre → Type,

Bgood : Apre → Bpre → Type,

ηgood : (x : X) → Agood (ηpre x),

extgood : (apre : Apre) → Agood apre →
(bpre : Bpre) → Bgood apre bpre → Agood (extpre apre bpre),

injgood : (apre : Apre) → Agood apre → Bgood apre (injpre apre).

The inductive-inductive object is defined as

A = (apre : Apre)×Agood apre,

B (apre, agood) = (bpre : Bpre)×Bgood apre bpre,

η x = ηpre x, ηgood x,

ext (apre, agood) (bpre, bgood) = extpre apre bpre, extgood apre agood bpre bgood,

inj (apre, agood) = injpre apre, injgood apre agood.

Here, the sorts A and B are defined as pairs of the pre-syntax with a goodness proof,
and operations are performed component-wise on both the pre-syntax and the
goodness proof (using sort and operation in their algebraic sense).

Fig. 3: Construction given by Nordvall Forsberg

Combining these results, we conclude that Nordvall Forsberg’s construction sa-
tisfies the simple elimination rules in intensional type theory only if UIP holds
(Theorem 1).

2.1 Unique Goodness implies UIP

We define notation (x == y) to mean the term

extpre (ηpre x) (injpre (ηpre y)) : Apre.

We first prove that there are at least as many proofs of Agood (x == y) as there
are of x ≡X y.



Constructing Inductive-Inductive Types in Cubical Type Theory 5

Lemma 1 (x ≡X y is a retract of Agood). For all x : X and y : X, there are
functions

f : x ≡X y → Agood (x == y), g : Agood (x == y) → x ≡X y,

such that for all e : x ≡X y, g (f e) ≡ e.

Proof. To define f , we let f refl =

extgood (ηpre x) (ηgood x) (injpre (ηpre x)) (injgood (ηpre x) (ηgood x)).

To define g, pattern matching on agood has only one possibility: agood =

extgood (ηpre x) (ηgood x) (injpre (ηpre x)) (injgood (ηpre x) (ηgood x)),

forcing y to be x, and in this case x ≡X y holds by reflexivity. Then when
e = refl, f e returns a proof in the format matched by g, so g (f refl) ≡ refl,
and thus g (f e) ≡ e.

Lemma 2 (Unique goodness implies UIP). If Agood t is a mere proposition
for all t : Apre, then UIP holds for the type X.

Proof. Assume goodness proofs are unique, and take x : X, y : X, with p : x ≡ y,
q : x ≡ y. We want to show that p ≡ q. Using the f and g from Lemma 1,

p ≡ g (f p) by Lemma 1
≡ g (f q) by uniqueness in Agood (x == y), f p ≡ f q

≡ q by Lemma 1.

2.2 Simple Elimination Rules imply Unique Goodness

Now we prove that there are at least as many proofs of B (tpre, tgood) as there
are of Agood tpre.

Lemma 3 (Agood is a retract of B). For all tpre : Apre and tgood : Agood tpre,
there are functions

f : Agood tpre → B (tpre, tgood), g : B (tpre, tgood) → Agood tpre

such that for all agood : Agood tpre, g (f agood) ≡ agood.

Proof. We define f agood = injpre tpre, injgood tpre agood. By induction on
Bgood, we define a function

g′ : (apre : Apre) → (bpre : Bpre) → Bgood apre bpre → Agood apre

taking
g′ apre (injpre apre) (injgood apre agood) = agood.

Then we can define g (bpre, bgood) = g′ tpre bpre bgood. Then g (f agood) ≡ agood
holds by reflexivity.



6 Jasper Hugunin

Lemma 4 (B a is contractible). Assuming the simple elimination rules from
Figure 1 hold for the (A,B, η, inj, ext) constructed above, for all a : A and
b : B a, inj a ≡B a b

Proof. Referring to the simple elimination rules given in Figure 1, we pattern
match on B by giving motives (PA,PB) and methods (Pη, Pext, Pinj), and
then using the resulting EB .

We set PA a = ⊤, and take PB a b = inj a ≡B a b. Then we have Pη x = ⋆,
and Pext a ⋆ b H = ⋆, and we take Pinj a ⋆ = refl : inj a ≡B a inj a. The
conclusion follows by EB : (a : A) → (b : B a) → inj a ≡B a b.

Lemma 5 (Simple elimination rules imply unique goodness). If the sim-
ple eliminators hold for the (A,B, η, inj, ext) constructed above, then for all
t : Apre, Agood t is a mere proposition.

Proof. Assume that the simple elimination rules hold, and take t : Apre, and a1
and a2 in Agood t. We use the definition of f and g from Lemma 3 with tpre = t
and tgood = a1.

By Lemma 4, we know that

inj (t, a1) ≡B (t,a1) f a2.

Applying g to both sides, and recognizing that g (inj (t, a1)) computes to a1,
while g (f a2) computes to a2 we find that

a1 = g (inj (t, a1)) ≡Agood t g (f a2) = a2.

2.3 Simple Elimination Rules for Nordvall Forsberg’s Construction
only if UIP

Theorem 1. If the simple elimination rules hold for Nordvall Forsberg’s con-
struction, then UIP holds for the type X.

Proof. Compose the results of Lemma 2 and Lemma 5.

Therefore Nordvall Forsberg’s approach to constructing inductive-inductive
types requires UIP. Since UIP is inconsistent with the Univalence axiom at the
center of Homotopy Type Theory (HoTT) [18], we have an incentive to come up
with a different construction which is consistent with HoTT.

3 Constructing an Inductive-Inductive Type in Cubical
Type Theory

Cubical type theory [6] is a recently developed type theory which gives a con-
structive interpretation of the Univalence axiom of Homotopy Type Theory. It
has an implementation as a mode for Agda [19], which we use to formalize the
construction given in this section of the running example from Figure 1.



Constructing Inductive-Inductive Types in Cubical Type Theory 7

The most important difference between cubical type theory and standard
intensional type theory as implemented by Coq or vanilla Agda is that the iden-
tity type x ≡X y is represented (loosely speaking) by the type of functions p
from an interval type I with two endpoints i0 and i1 to X such that p i0 reduces
to x and p i1 reduces to y. This allows, for example, a simple proof of function
extensionality: if we have A : Type, B : A → Type, f and g functions of type
(a : A) → B a, and h : (a : A) → f a ≡ g a, then we have (λi.λa.h a i) : f ≡ g.
Taking cong f = λp.λi.f (p i) : x ≡ y → f x ≡ f y and ◦ for function composi-
tion, we also have nice properties such as (cong f) ◦ (cong g) = cong (f ◦ g).

In this section, we construct the running example from Figure 1, along with
the simple elimination rules, in cubical type theory. Our construction proceeds
in several steps:

– In §3.1, we approximate by dropping the indices, leaving a standard mutual
inductive definition called the pre-syntax. This is the same as the pre-syntax
given in Figure 2.

– In §3.2, we define goodness algebras, collections of predicates over the pre-
syntax which define the index relationship (analogously to Agood and Bgood
from §2). We also show that a goodness algebra exists, and call it O.

– In §3.3, we define a predicate nice on goodness algebras, such that if we have
a nice goodness algebra, then we can construct the simple elimination rules.
Being nice is similar to having proofs of goodness be unique as in §2.

– In §3.4, we use pattern matching over the pre-syntax to define a function S
from goodness algebras to goodness algebras.

– In §3.5, we define the limit of the sequence

O, S O, S (S O), . . . , Sn O, . . .

and show that it is nice. This is the only section that utilizes the differences
between cubical type theory and standard intentional type theory.

Given the nice goodness algebra in §3.5 we can then construct the simple elimi-
nation rules by §3.3. This construction has been formalized in Agda2 using the
--cubical flag which implies --without-K (see RunningExample.agda).

The intuition for our construction is that the Nordvall Forsberg’s approach
of pairing an approximation with goodness predicates can be repeated, and each
time the approximation gets better. Using HoTT terminology, we showed in §2
that one iteration suffices only if X has homotopy level 0 (is a homotopy set,
satisfies UIP). In general, n+1 iterations are sufficient if only if X has homotopy
level n. The successor goodness algebra defined in §3.4 is a slightly simplified
version of Nordvall Forsberg’s construction, and taking the limit (in §3.5) gives
a construction which works for arbitrary homotopy levels.

3.1 Pre-syntax
The pre-syntax is the same as that used in §2, defined as a mutually inductive
type in Figure 2. The constructors of the pre-syntax have the same types as the
2 Agda version 2.6.0 commit bd338484d



8 Jasper Hugunin

constructors of the full inductive-inductive definition (given in Figure 1), except
we replace B a with Bpre everywhere, ignoring the dependence of B on A.

Consider this as the closest approximation of the target inductive-inductive
type by a standard inductive type; the dependence of B on A is the only new
element that inductive-inductive definitions add. Of course, this is only an ap-
proximation. We can form elements of the pre-syntax, such as

extpre (ηpre x) (injpre (ηpre y))

for x ̸= y that should be excluded from the inductive-inductive formulation,
since inj (η y) : B (η y) while ext (η x) : B (η x) → A.

We will use definitions by induction and by pattern-matching on the pre-
syntax in sections §3.3 and §3.4 respectively.

3.2 Goodness Algebras

As we saw in §3.1, the pre-syntax is too lenient, and contains terms we want to
exclude from the inductive-inductive object. In this section, we define a notion of
sub-algebra of the pre-syntax, which we will call a goodness algebra, and explain
how to combine a goodness algebra with the pre-syntax to get an inductive-
inductive object (A,B, η, ext, inj). We also define a goodness algebra O.

In Figure 4, for each clause of the inductive-inductive specification, we define
3 things:

1. For each sort X a type IxX giving the data X depends on, and for each
operation F constructing an element of sort X, a family ArgF : Y → IxX →
Type where Y collects the arguments of the operation in the pre-syntax,
where ArgF y ϕ gives the data needed to justify that pre-syntax constructed
by Fpre from y has index ϕ. In later sections we will also write IxX δG and
ArgF δG to specify which goodness algebra we are working in.

2. The type of the corresponding component in the goodness algebra. For sorts,
this is a predicate relating Ix and the pre-syntax, while for the operations,
this is a function witnessing that each element of Arg gives a goodness proof
relating the index ϕ to the pre-syntax.

3. A way to combine the goodness algebra with the pre-syntax to form an
inductive-inductive object. For sorts, we pair the pre-syntax with a goodness
proof, while for operations we apply the operation given by the goodness
algebra, mimicking the construction in Figure 3.

Comparing this definition to the construction in §2, the mutual inductive
definition of Agood and Bgood (in Figure 3) has types equivalent to the result of
dropping the dependence of δG.B on δG.A (defined in Figure 4), going from

δG.B : (a : Apre)× δG.A ⋆ a → Bpre → Type to Bgood : Apre → Bpre → Type .

The other difference is that we replace the inductive index (call it s) in the
conclusion by a fresh variable ϕ, with the condition s = ϕ included in Arg.



Constructing Inductive-Inductive Types in Cubical Type Theory 9

For our running example from Figure 1, a goodness algebra is the type of tuples of

δG = (δG.A, δG.B, δG.η, δG.ext, δG.inj)

with the types defined below. Simultaneously, we define how to combine a goodness
algebra δG with the pre-syntax to construct an inductive-inductive object
(A,B, η, ext, inj).

IxA = ⊤,

δG.A : IxA → Apre → Type,

A = (a : Apre)× δG.A ⋆ a

IxB = A,

δG.B : IxB → Bpre → Type,

B ϕ = (b : Bpre)× δG.B ϕ b,

Arg η x ϕ = ⊤× ⋆ ≡IxA ϕ,

δG.η : (x : X) → (ϕ : IxA) → Arg η x ϕ → δG.A ϕ (ηpre x),

η x = ηpre x, δG.η x ⋆ (⋆, refl),

Arg ext (a, b) ϕ = ((aG : δG.A ⋆ a)× δG.B (a, aG) b)× ⋆ ≡IxA ϕ,

δG.ext : (p : Apre ×Bpre) → (ϕ : IxA) →

Arg ext p ϕ → δG.A ϕ (extpre p),

ext ((apre, agood), (bpre, bgood)) =

extpre apre bpre, δ
G.ext (apre, bpre) ⋆ ((agood, bgood), refl),

Arg inj a ϕ = (aG : δG.A ⋆ a)× (a, aG) ≡IxB ϕ,

δG.inj : (a : Apre) → (ϕ : IxB) → Arg inj a ϕ → δG.B ϕ (injpre a),

inj (apre, agood) = injpre apre, δ
G.inj apre (apre, agood) (agood, refl).

We also define the goodness algebra O by

O.A ϕ a = ⊤, O.B ϕ b = ⊤,

O.η x ϕ t = ⋆, O.ext (a, b) ϕ t = ⋆, O.inj a ϕ t = ⋆.

Fig. 4: Goodness algebras

3.3 Niceness

In this section, we identify a property niceness that is sufficient for a goodness al-
gebra to produce an inductive-inductive object (A,B, η, ext, inj) which satisfies
the simple elimination rules, as given in Figure 1.

To define niceness, we use the concept of equivalence, as defined in Uni-
valent Foundations Program [18] (§4.4 Contractible fibers). Given a function



10 Jasper Hugunin

f : A → B, we write isEquiv f (leaving A and B implicit) to denote that f is an
equivalence between A and B. We will also write A ≃ B for the type of pairs of
a function f with a proof that f is an equivalence.

We will say that a goodness algebra is nice if we have equivalence proofs
(δN .η, δN .ext, δN .inj), with types

δN .η x ϕ : isEquiv (δG.η x ϕ),

δN .ext (a, b) ϕ : isEquiv (δG.ext (a, b) ϕ),

δN .inj a ϕ : isEquiv (δG.inj a ϕ).

Equivalences between types are very close to equalities between types (the
Univalence axiom makes this precise). If we have a nice goodness algebra, the
combined data looks similar to a recursive definition:

δG.A : ⊤ → Apre → Type,

δG.B : ((a : Apre)× δG.A ⋆ a) → Bpre → Type,

δG.A ϕ (ηpre x) ≃ Arg η x ϕ,

δG.A ϕ (extpre a b) ≃ Arg ext (a, b) ϕ,

δG.B ϕ (injpre a) ≃ Arg inj a ϕ.

However, the dependence of δG.B on δG.A makes this what Nordvall Forsberg
calls a “recursive-recursive” definition, and so we cannot use the standard eli-
minator of the pre-syntax. In §3.5, we will expend much effort to construct a
solution to this system. Once we have done so, the inductive-inductive object
produced by the goodness algebra will satisfy the simple elimination rules, as we
show in the following lemma.

Lemma 6 (Nice goodness algebras give simple elimination rules). Gi-
ven a goodness algebra δG with proof of niceness δN , the inductive-inductive
object (A,B, η, ext, inj) produced from δG as specified in §3.2 satisfies the sim-
ple induction rules given in Figure 1.

Proof. The proof is formalized in RunningExample.agda. The main idea of the
proof is to induct on the pre-syntax, and exploit the equivalences provided by
niceness δN . In the inj case for example, we have a proof of δG.B ϕ (injpre a).
But without loss of generality, we can replace that goodness proof with δG.inj
applied to an element of Arg inj a ϕ, which contains both a proof agood :
δG.A ⋆ a and a proof that (a, agood) ≡ ϕ. Using J to eliminate that equality
leaves a goal to which the provided simple induction step for inj applies. This
proof does not use cubical type theory in any essential way.

3.4 Successor Goodness Algebra

We are trying to create a nice goodness algebra by taking the limit of successive
approximations, so we need a step function, which we will call S, that takes a



Constructing Inductive-Inductive Types in Cubical Type Theory 11

goodness algebra δG and returns a new goodness algebra S δG, which is closer
in some sense to being nice. We do so by pattern matching on the pre-syntax to
unroll one level of the recurrence equations niceness encodes.

We define by pattern matching

(E δG).A : (a : Apre) → (ϕ : IxA δG) → (Y : Type)× (Y → δG.A ϕ a),

(E δG).B : (b : Bpre) → (ϕ : IxB δG) → (Y : Type)× (Y → δG.B ϕ b),

(E δG).A (ηpre x) = λϕ.Arg η δG x ϕ, δG.η x ϕ,

(E δG).A (extpre a b) = λϕ.Arg ext δG (a, b) ϕ, δG.ext (a, b) ϕ,

(E δG).B (injpre a) = λϕ.Arg inj δG a ϕ, δG.inj a ϕ,

which gives a new property Y which maps back to δG.B ϕ b for each b and ϕ,
and similarly for A.

Then, in Figure 5, we define the new goodness algebra (S δG) along with
projection functions (δπ δG) which take Ix and Arg from (S δG) to δG.

We define the successor algebra (S δG) along with projection functions (δπ δG) by:

(δπ δG).A : IxA (S δG) → IxA δG,

(δπ δG).A = λ ⋆ .⋆,

(S δG).A ϕ a = (E δG).A a ((δπ δG).A ϕ) .1,

(δπ δG).B : IxB (S δG) → IxB δG,

(δπ δG).B = λ(apre, agood).(apre, (E δG).A apre ⋆ .2 agood),

(S δG).B ϕ b = (E δG).B b ((δπ δG).B ϕ) .1,

(δπ δG).η x ϕ : Arg η (S δG) x ϕ → Arg η δG x ((δπ δG).A ϕ),

(δπ δG).η x ϕ = λ(⋆, p).(⋆, cong ((δπ δG).A) p),

(S δG).η x ϕ = (δπ δG).η x ϕ,

(δπ δG).ext (a, b) ϕ : Arg ext (S δG) (a, b) ϕ → Arg ext δG (a, b) ((δπ δG).A ϕ),

(δπ δG).ext (a, b) ϕ = λ((agood, bgood), p). let aG := (E δG).A a ⋆ .2 agood in
((aG, (E δG).B b (a, aG) .2 bgood), cong ((δπ δG).A) p),

(S δG).ext (a, b) ϕ = (δπ δG).ext (a, b) ϕ,

(δπ δG).inj a ϕ : Arg inj (S δG) a ϕ → Arg inj δG a ((δπ δG).B ϕ),

(δπ δG).inj a ϕ = λ(agood, p).((E δG).A a ⋆ .2 agood, cong ((δπ δG).B) p),

(S δG).inj a ϕ = (δπ δG).inj a ϕ.

Fig. 5: Successor goodness algebra



12 Jasper Hugunin

The projection functions (δπ δG) consist of applying the map given by the
second component of (E δG) everywhere in sight. The sorts are then defined by
the first component of (E δG), while the operations can be defined to be the
corresponding projection function itself.

Concretely, for the sort B, we define (δπ δG).B to map between IxB (SδG)
and IxB δG. This consists of applying the function ((E δG).A apre ⋆ .2) which
we defined by pattern matching above to agood. Then, since (S δG).B gets an
inductive index ϕ in (S δG) but ((E δG) b ϕ .1) is expecting an inductive index
in δG, we span the gap with the projection function (δπ δG).B just defined. The
definition of A follows the same pattern, but (δπ δG).A is even simpler because
IxA δG = ⊤ regardless of what goodness algebra we are working in.

For the operations, consider inj. Like with the sorts, we first define a pro-
jection function (δπ δG).inj a ϕ, which maps from Arg inj (S δG) to Arg inj δG,
and we fix up the inductive index ϕ with (δπ δG).B. For the first component of
Arg, we use the function given by the second component of (E δG).A to fix up
agood. For the second component, applying the projection (δπ δG).B to the equa-
lity proof works out on the left hand side because all these projection functions
are doing the same thing: applying the function given by the second component
of (E δG) everywhere. Finally, we can define (S δG).inj = (δπ δG).inj, because
(S δG).inj a ϕ is supposed to have codomain

(S δG).B ϕ (injpre a),

which is defined to be
(E δG).B (injpre a) ((δπ δG).B ϕ) .1,

which reduces on (injpre a) to
Arg inj δG a ((δπ δG).B ϕ),

which is exactly the codomain of (δπ δG).inj a ϕ.
3.5 Limit of Goodness Algebras

We will now construct a nice goodness algebra by taking the limit of the sequence
Sn O and showing that it is nice, where Sn O is defined by recursion on n with
S0O = O, S1+nO = S(Sn O). But first, we consider the limit of a chain of types.

Limit of Types This subsection Limit of Types is formalized in Chain.agda.
In order to take the limit of successive goodness algebras, we need to know

how to work with chains of types. Specifically, given (X : N → I → Type) and
π : (n : N) → X (n+ 1) i0 → X n i1, we consider the limit given by the type

chain.t X π = (f : (n : N) → X n i0)× ((n : N) → f n ≡X n π n (f (n+ 1)).

If we have x : chain.t X π, then let x.p denote the second projection.
This definition is designed to work well in cubical type theory, and uses the

interval I and native heterogeneous equality x ≡X y where X : I → Type (where
we can form p = λi.w : x ≡X y when p i0 = x, p i1 = y, and p i : X i). In
particular, this definition allows for dependent chains without transporting over



Constructing Inductive-Inductive Types in Cubical Type Theory 13

the base equality, which is problematic in cubical type theory because transport
gets stuck on neutral types; instead given

A : N → Type with fA : (n : N) → A (1 + n) → A n and
B : (n : N) → A n → Type with

fB : (n : N) → (a : A (1 + n)) → B (1 + n) a → B n (fA n a),

we can form
LA = chain.t (λn.λi.A n) fA : Type,

LB = λa.chain.t(λn.cong(B n)(a.p n))(λn.fB n (a.p (1 + n) i0)) :LA → Type

using cong(B n)(a.p n) which is particularly well behaved in cubical type theory.
This construction commutes with most type formers: dependent function

types, dependent pair types, identity types, and constants. We also note a de-
pendent version of the fact that the limit of a chain is equivalent to the limit of
a shifted chain to substitute for Ahrens et al. [1, Lemma 12].
Lemma 7 (Dependent chain equivalent to shifted chain). Given

X : N → Type, πX : (n : N) → X (1 + n) → X n,

Y0 : (n : N) → X n → Type, Y1 : (n : N) → X n → Type,

f : (n : N) → (x : X n) → Y1 n x → Y0 n x,

g : (n : N) → (x : X (1 + n)) → Y0 (1 + n) x → Y1 n (πX n x),

x : chain.t (λn.λi.X n) πX ,

and letting the X arguments to f and g be implicit, we can define the types
t = chain.t (λn.cong (Y0 n) (x.p n)) (λn.λy.f n (g n y)),

t+ = chain.t (λn.cong (Y1 n) (x.p n)) (λn.λy.g n (f (1 + n) y)).

Applying f component-wise gives a function from t+ to t. This function is an
equivalence.
We only use Lemma 7 when Y1 n (πX n x) = Y0 (1 + n) x, so we may take g to
be the identity, leaving t+ the shifted chain of t up to X arguments.

Limit of Goodness Algebras Now we use the lemmas about chains to con-
struct a nice goodness algebra, and then conclude by constructing an inductive-
inductive object (A,B, η, ext, inj) that satisfies the simple elimination rules.
Lemma 8. A nice goodness algebra exists.
Proof. The sorts of the limit goodness algebra are defined as a chain, and opera-
tions act pointwise on each component of the chain. To prove that the operations
are equivalences, we compose a proof that Arg commutes with chains (given by
combining the lemmas about chains commuting with type formers) with a proof
that for each sort, the chain given by the (E (Sn O)) is equivalent to the chain
given by (Sn O) (given by Lemma 7). Since (E (Sn O)) is defined by pattern
matching to reduce to Arg, the right and left sides of these equivalences agree,
and we find that the operations are indeed nice. See the formalization for details.



14 Jasper Hugunin

Theorem 2. There exists an inductive-inductive object (A,B, η, ext, inj) that
satisfies the simple elimination rules as defined in Figure 1.

Proof. A nice goodness algebra exists by Lemma 8, therefore we can construct
(A,B, η, ext, inj) satisfying the simple elimination rules by Lemma 6.

We have therefore succeeded. In cubical type theory, the inductive-inductive
definition from Figure 1 is constructible.

4 Related Work

The principle of simultaneously defining a type and a family over that type
has been used many times before. Danielsson [9] used an inductive-inductive-
recursive definition to define the syntax of dependent type theory, and Chapman
[5] used an inductive-inductive definition for the same purpose. Conway’s surreal
numbers [7] are given (up to a defined equivalence relation) by the inductive-
inductive definition of number and less than, where less than is a relation indexed
by two numbers [15, §7.1]. The HoTT book §11.3 gives a definition of the Cauchy
reals as a higher inductive-inductive definition [18].

In his thesis and previous papers [15, 16, 17], Nordvall Forsberg studies the
general theory of inductive-inductive types, axiomatizing a limited class of such
definitions, and giving a set theoretic model showing that they are consistent.
He also considers various extensions such as allowing a third type indexed by
the first two, allowing the second type to be indexed by two elements of the first,
or combining inductive-inductive definitions with inductive-recursive definitions
from Dybjer and Setzer [10].

There have been several attempts to define a general class of inductive-
inductive types larger than that in Nordvall Forsberg’s thesis. Kaposi and Ko-
vács [14] gives an external syntactic description of a class which includes higher
inductive-inductive types, and Altenkirch et al. [2] gives a semantic description
of a class including quotient inductive-inductive types, but neither gives a type
of codes that can be reasoned about internally. Working with UIP, Altenkirch
et al. [4] propose a class of quotient inductive-inductive types.

Nordvall Forsberg’s thesis [15] appears to give the best previously known
reduction of inductive-inductive types to regular inductive types known. As we
have shown, Nordvall Forsberg’s approach can only be applied to intensional type
theory if UIP holds. Furthermore, the equations for both Nordvall Forsberg’s
approach and our approach only hold propositionally.

Many other structures have been reduced to plain inductive types. Our con-
struction of inductive-inductive types can be seen as an adaptation of the techni-
que in Ahrens et al. [1], where coinductive types are constructed from N by
taking a limit. Indexed inductive types (which are used in Nordvall Forsberg’s
construction) are constructed from plain inductive types in Altenkirch et al. [3],
with good computational properties (provided an identity type that satisfies J
strictly). And small induction-recursion is reduced to plain indexed inductive
types in Hancock et al. [11].



Constructing Inductive-Inductive Types in Cubical Type Theory 15

5 Conclusions and Future Work

In this paper, we have:

1. Shown that the construction of inductive-inductive types given by Nordvall
Forsberg implies UIP.

2. Given an alternative construction of one particular inductive-inductive type
in cubical type theory, which is compatible with Homotopy Type Theory.

We claim that the construction of our specific running example is straightfor-
wardly generalizable to other inductive-inductive types, and have formalized the
construction of a number of other examples including types with non-finitary
constructors and indices to support this claim (see the GitHub repository refe-
renced in the introduction).

Going forward, we would like to investigate

– An internal definition of inductive-inductive specifications in HoTT. Early
experiments suggest that this requires surmounting difficulties related to
increasingly complex coherence conditions similar to those encountered when
defining semi-simplicial sets, c.f. Herbelin [12].

– Extending the proof given here to construct the general elimination rules.
The general elimination rules were defined in Nordvall Forsberg [15], but
that formulation they relies on either strict computation rules or extensional
type theory to be well typed. Kaposi and Kovács [14] give equivalent rules
which are well typed in intensional type theory.

– Identifying what needs to be added for the simple elimination rules to have
the expected computational behavior. Given the similar construction met-
hod, this hopefully also allows the construction of coinductive types with
nice computational behavior, c.f. Ahrens et al. [1].

– In the opposite direction from the previous point, rewriting the construction
given here in Coq + Function Extensionality. While the elimination rules
will have poor computational behavior, this would make using inductive-
inductive types in Coq possible without requiring any change to Coq itself,
while being compatible with HoTT. In particular, using cubical type theory
makes the proofs in §3.5 simpler, but we speculate that axiomatic function
extensionality is sufficient.

Acknowledgements I would like to thank Talia Ringer and Dan Grossman
from the UW PLSE lab, for their invaluable feedback throughout the revision
process. I also thank Pavel Panchekha, John Leo, Remy Wang, and Fredrik
Nordvall Forsberg for their comments.

Some of this work was completed while studying at Tokyo Institute of Techno-
logy under Professor Ryo Kashima. I would like to thank Professor Kashima, as
well as my fellow lab members and mentors Asami and Maniwa for making my
stay both productive and enjoyable.



Bibliography

[1] Ahrens, B., Capriotti, P., Spadotti, R.: Non-wellfounded trees in homotopy
type theory. In: TLCA (2015)

[2] Altenkirch, T., Capriotti, P., Dijkstra, G., Kraus, N., Nordvall Forsberg,
F.: Quotient inductive-inductive types. In: Baier, C., Dal Lago, U. (eds.)
Foundations of Software Science and Computation Structures, FoSSaCS.
pp. 293–310. Springer International Publishing (2018)

[3] Altenkirch, T., Ghani, N., Hancock, P., McBride, C., Morris, P.: Indexed
containers. Journal of Functional Programming 25, e5 (2015)

[4] Altenkirch, T., Kaposi, A., Kovács, A.: Constructing quotient inductive-
inductive types. Proc. ACM Program. Lang. 3(POPL), 2:1–2:24 (Jan 2019),
http://doi.acm.org/10.1145/3290315

[5] Chapman, J.: Type theory should eat itself. Electronic Notes in Theore-
tical Computer Science 228, 21 – 36 (2009), http://www.sciencedirect.
com/science/article/pii/S157106610800577X, proceedings of the Inter-
national Workshop on Logical Frameworks and Metalanguages: Theory and
Practice (LFMTP 2008)

[6] Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical Type Theory:
a constructive interpretation of the univalence axiom. IfCoLog Journal of
Logics and their Applications 4(10), 3127–3169 (Nov 2017), http://www.
collegepublications.co.uk/journals/ifcolog/?00019

[7] Conway, J.: On Numbers and Games. Ak Peters Series, Taylor & Francis
(2000), https://books.google.com/books?id=tXiVo8qA5PQC

[8] Coq Development Team, T.: The Coq proof assistant, version 8.8.0 (Apr
2018), https://doi.org/10.5281/zenodo.1219885

[9] Danielsson, N.A.: A formalisation of a dependently typed language as an
inductive-recursive family. In: Altenkirch, T., McBride, C. (eds.) Types
for Proofs and Programs. pp. 93–109. Springer Berlin Heidelberg, Berlin,
Heidelberg (2007)

[10] Dybjer, P., Setzer, A.: A finite axiomatization of inductive-recursive defini-
tions. In: Girard, J.Y. (ed.) Typed Lambda Calculi and Applications. pp.
129–146. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

[11] Hancock, P., McBride, C., Ghani, N., Malatesta, L., Altenkirch, T.: Small
induction recursion. In: Typed Lambda Calculi and Applications, 11th
International Conference, TLCA 2013. pp. 156–172 (2013)

[12] Herbelin, H.: A dependently-typed construction of semi-simplicial types.
Mathematical Structures in Computer Science 25(5), 1116–1131 (2015)

[13] Hofmann, M., Streicher, T.: The groupoid interpretation of type theory. In:
Twenty-five years of constructive type theory (Venice, 1995), Oxford Logic
Guides, vol. 36, pp. 83–111. Oxford Univ. Press, New York (1998)

[14] Kaposi, A., Kovács, A.: A Syntax for Higher Inductive-Inductive Types.
In: Kirchner, H. (ed.) 3rd International Conference on Formal Structu-
res for Computation and Deduction (FSCD 2018). Leibniz Internatio-

http://doi.acm.org/10.1145/3290315
http://www.sciencedirect.com/science/article/pii/S157106610800577X
http://www.sciencedirect.com/science/article/pii/S157106610800577X
http://www.collegepublications.co.uk/journals/ifcolog/?00019
http://www.collegepublications.co.uk/journals/ifcolog/?00019
https://books.google.com/books?id=tXiVo8qA5PQC
https://doi.org/10.5281/zenodo.1219885


Constructing Inductive-Inductive Types in Cubical Type Theory 17

nal Proceedings in Informatics (LIPIcs), vol. 108, pp. 20:1–20:18. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018),
http://drops.dagstuhl.de/opus/volltexte/2018/9190

[15] Nordvall Forsberg, F.: Inductive-inductive definitions. Ph.D. thesis, Swan-
sea University (2013)

[16] Nordvall Forsberg, F., Setzer, A.: Inductive-inductive definitions. In: Dawar,
A., Veith, H. (eds.) CSL 2010. Lecture Notes in Computer Science, vol. 6247,
pp. 454–468. Springer, Heidelberg (2010)

[17] Nordvall Forsberg, F., Setzer, A.: A finite axiomatisation of inductive-
inductive definitions. In: Berger, U., Hannes, D., Schuster, P., Seisenber-
ger, M. (eds.) Logic, Construction, Computation, Ontos mathematical logic,
vol. 3, pp. 259–287. Ontos Verlag (2012)

[18] Univalent Foundations Program, T.: Homotopy Type Theory: Univalent
Foundations of Mathematics. https://homotopytypetheory.org/book,
Institute for Advanced Study (2013)

[19] Vezzosi, A.: Adding cubes to agda (2017), https://hott-uf.github.io/
2017/abstracts/cubicalagda.pdf

http://drops.dagstuhl.de/opus/volltexte/2018/9190
https://homotopytypetheory.org/book
https://hott-uf.github.io/2017/abstracts/cubicalagda.pdf
https://hott-uf.github.io/2017/abstracts/cubicalagda.pdf

	Constructing Inductive-Inductive Types in Cubical Type Theory

